A servo mechanism or servo is an automatic device that uses error sensing feedback to correct the performance of a mechanism. The term correctly applies only to systems where the feedback or error correction signals help control mechanical position or other parameters. For example, an automotive power window control is not a servomechanism, as there is no automatic feedback which controls position the operator does this by observation. By contrast the car's cruise control uses closed loop feedback, which classifies it as a servomechanism. A servomechanism is unique from other control systems because it controls a parameter by commanding the time based derivative of that parameter. For example a servomechanism controlling position must be capable of changing the velocity of the system because the time-based derivative (rate change) of position is velocity. A hydraulic actuator
controlled by a spool valve and a position sensor is a good example because the velocity of the actuator is proportional to the error signal of the position sensor. A common type of servo provides position control. Servos are commonly electrical or partially electronic in nature, using an electric motor as the primary means of creating mechanical force. Other types of servos use hydraulics, pneumatics, or magnetic principles. Usually, servos operate on the principle of negative feedback, where the control input is compared to the actual position of the mechanical system as measured by some sort of transducer at the output. Any difference between the actual and wanted values (an "error
signal") is amplified and used to drive the system in the direction necessary to reduce or eliminate the error. An entire science known as control theory has been developed on this type of system. Today servomechanisms are used in automatic machine tools, satellite-tracking antennas, remote control airplanes, automatic navigation systems on boats and planes, and antiaircraft-gun control systems. Other examples are fly-by-wire systems in aircraft which use servos to actuate the aircraft's control surfaces, and radio-controlled models which use RC servos for the same purpose.
No comments:
Post a Comment